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1. INTRODUCTION 

Modern nonequilibrium thermodynamics has worked 
out the methods which allow the formulation of the 
complete set of equations describing the broad class 
of irreversible processes. By formulation of these 
equations the modern thermodynamics of irreversible 
processes enables us to state clearly and explicitly the 
conditions of validity of the derived equations, which 
really is a large advantage in comparison with the 
older nonequilibrium thermodynamics, which uses 
more or less heuristic methods. Even recently, paper 
[I], in which the authors derive the equation of heat 
conduction in metal systems, taking into account the 
presence of an electric current, has appeared. The 
authors of this paper do not use those methods of 
modem nonequilibrium thermodynamics which are at 
present common and accepted. Therefore, the aim of 
the present paper is to derive the complete set of 
equations, which describe such irreversible processes 
as the thermodiffusion and thermo-electric phenom- 
ena in multi-component condensed systems. The 
results were obtained at first in a general form, and 
then they were applied for metal systems and sem- 
iconductors. 

In monograph [2] there is a description of (i) the 
thermodiffusion in gases and liquids, which are 
enclosed in a vessel, so that the hydrodynamic velocity 
has zero value and (ii) the thermo-electric phenomena 
in electrolytes. The present paper deals with the irre- 
versible processes in solids with the main emphasis on 
derivation of the equation of heat conduction, taking 
into consideration the thermal expansion of materials. 

The present paper is divided into seven parts. In the 
second part the starting equations are briefly intro- 
duced. The aim of this part is to show the conditions 
under which the Gibbs’s relation (9) is also valid for 
crystals. In connection with this condition, we 
explicitly make note of the fact that in the whole paper 
we consider only a reversible change of volume. That 

will be important especially in the third part, in which 
the internal energy is defined in a different way to 
that in monograph [2], and, similarly, the method of 
derivation of the entropy balance equation is different 
as well. In Section 4 the phenomenological equations 
for multi-component systems are formulated. The 
main contribution of the present paper is in Section 
5, in which the generalized exact equation of heat 
conduction in the framework of linear nonequilibrium 
thermodynamics is derived. In Sections 6 and 7, the 
generalized equation of heat conduction is applied to 
metal systems and semiconductors. In these sections, 
the conditions under which some terms of the exact 
equation may be neglected without loss of sufficient 
accuracy are discussed. 

2. STARTING EQUATIONS 
By constructing the complete set of equations for 

describing the irreversible processes, the modem non- 
equilibrium thermodynamics starts partly from the 
relation of the entropy production and partly from 
Onsager reciprocal relations. For this reason, our first 
step will be to derive the entropy balance equation, 
from which the relation for the entropy production 
follows immediately. 

To obtain the derivation of the entropy balance 
equation we will start with certain equations, which 
will be introduced in a short form. There exist two 
reasons for their introduction. The first one is, that in 
the case of solids and especially crystals, we meet 
some facts which are not taken into consideration in 
monograph [2]. The second one is the necessity of 
introducing the notation of quantities which will be 
used. 

The basic equations for derivation of the entropy 
balance equation are as follows : 

(a) Equation of motion of continuum 
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mass fraction of component i 
partial specific heat at constant 
pressure per unit mass of component i 
partial specific heat at constant volume 
per unit mass of component i 
linear strain tensor 
energy of band edge 
donor energy 
Fermi energy 
density of energy 
rate of generation per unit volume of 
component i 
enthalpy per unit mass 
partial specific enthalpy of component i 
unit tensor 
electrical current density 
contribution to the electric current 
density from component i 
heat current density 
entropy flux 
diffusion flow of component i 
Boltzmann constant 
mass of particle of component i 
rest mass of electron 
number of components of the system 
intrinsic carrier density 
particle number density of component 
i 
pressure tensor 
equilibrium part of the pressure tensor 
hydrostatic pressure 
charge of particle of component i 
rate of recombination-trapping per 
unit volume of component i 

9 entropy per unit mass 
si partial specific entropy of component 

i 
S density of entropy 
fk transference number of component k 
T temperature 
U internal energy per unit mass 
ZJ density of internal energy 
V hydrodynamic (barycentric) velocity 
v, velocity of component i 
1’ specific volume. 

Greek symbols 
permittivity of vacuum 
relative permittivity 
Seebeck coefficient 
Seebeck coefficient of component i 
thermal conductivity 
chemical potential of component i 
hole mobility 
electron mobility 
Peltier coefficient 
non-equilibrium part of the pressure 
tensor 
density 
density of component i 
resistivity 
resistivity of component i 
electric charge density 
entropy production 
Thomson coefficient 
dielectric relaxation time 
potential energy per unit mass of 
component i. 

1 

p$ = -V-P+ i p;F,, 
!=I 

(1) 

where 

P = i PI9 P = Peg +n, v = i civ,, 
i= I i= I 

F, = - W,, $=&+v.v 

is a substantial time derivative. 
The isotropic part of II is connected with the irre- 

versible change of volume and the residium part is 
connected with a viscous flow. 

(b) Mass balance equations 

apZ 
z = -V.P,V,, for i = 1,2,. ,n (2) 

or 

where 

p$= -V. J,, fori= 1,2 ,..., II, (3) 

J, = p;(v,-v), u = f, c, = ;. 

(c) Energy conservation law 

ae 
at’ -V* ev+J,+ i($i+pi)Ji+v.P . (4) i= I 

(d) Gibbs’s relation 
The energy balance equation in connection with 

the second law of thermodynamics has the following 
form : 
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+ s P :%dV+i pi 
n(r) q at J,.dS. (5) 

i= I 

By applying Gauss’s theorem and auxiliary relation 

and from equation (5) follows the equation 

T$=(U-TS)V.v+;+P,: g + f p,V* Ji. 
i= I 

(6) 

Equation (6) follows from equation (S), because 
equation (5) is valid for the arbitrary domain a(t). 
Equation (6) represents the Gibbs relation for crystal. 
From the definition of the linear strain tensor, we can 
write 

aD 
at = [;(Vv+vV)-fV~vl]+~V~vl, 

where [i(Vv+vV) -i V * vl] means the pure defor- 
mation and :V - vl expresses the deformation con- 
nected with the change of volume. 

If the deformation of crystal is connected only with 
the change of volume, then 

aD 
- = ;vv1. at 

After substituting relation (7) into equation (6) we 
obtain the equation 

T~=(L~-TS)V.V+~+~V.V+~~~V.J,, (8) 
i=l 

where p = i SpP,. 
For our purpose, it is suitable to transform equation 

(8) with the help of relations S = ps, U = pu, 

g= -v.pv 

and the equations of type (3) into the form 

Equation (9) is analogous to the Gibbs’s relation 
for isotropic systems. This fact allows us to use those 
methods which are used in ref. [2] for formulating the 
equations of nonequilibrium thermodynamics. Equa- 
tion (9) will be the last basic equation for derivation 
of the entropy balance equation. 

3. ENTROPY BALANCE EQUATION 

With the help of the equations of type (2), we can 
derive the potential energy balance equation, whose 
form follows from [2] 

apti 
at= -8. p$v+t&Ji -iJi.Fi-v.ip,Fi, 

i= , i= I i=l 

(10) 
where JI = X1 citii. 

We substitute equation (lo), together with the 
definition of internal energy 

e = p$+pu, 

into equation (4). After that, we obtain the internal 
energy balance equation 

g = -V- puv+J,+ f: piJi+v*P 
i= I 

+ k J;Fi+v. i piPi, (11) 

Kinetic energy ipv2 in ref. [2] is taken from the 
internal energy. In our case, when we take into con- 
sideration the thermal expansion, the hydrodynamic 
velocity v is dependent on temperature and, therefore, 
we include the kinetic energy ipv2 into the internal 
energy. The idea of the method of the entropy balance 
equation derivation is motivated by the assumption 
that the change of volume as a result of the thermal 
expansion is reversible. 

We substitute equation (11) into equation (9), and 
making some changes, we obtain the entropy balance 
equation 

Tg = -V* Tpsv+J,+v*(T+TI) 

- $, pivi *(VPi -FJ 

fv. i piVpi--VpfpsVT , 
> 

(12) 
i= 1 

where 

T = P, --; Sp(P,)l. 

By applying the Gibbs-Duhem’s relation, equation 
(12) obtains the final form 

aps - = -V-J,- $-VT- i,$ PiVippi-~,), at ,--I 

(13) 

where 

J = J,+vG+V 
8 T +psv. 

If we introduce into equation (13) the relation 
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Vpi = -siVT+ (VP,),, 

then we obtain the modified entropy balance equation. 
Its form is as follows : 

where 

J; = J,+v*(T+II-Ti J,s,. 
i= 1 

According to the Gibbs-Duhem’s relation 
X:= 1 p, [ (V,U~)~ - F,] = 0 is valid. From this relation we 
calculate the term p,[(V&, - Fn] and introduce it into 
relation (14). After introducing we obtain the equa- 
tion 

!!?_V J_!& 
at * b 

T2 

-~~~~ui(v,-v.).[(V11,)~-Fil. (15) 

From equation (15) the relation for the entropy 
production follows immediately 

a(s) = - +VT- ;,$ p;(v<-v,). {(V/&-F;}. 
I--I 

(16) 

4. PHENOMENOLOGICAL LINEAR EQUATIONS 

For further progress, it will be necessary to specify 
quantities rji. Quantity $, will represent the electro- 
static potential energy per unit mass of component i. 
In this case 

*, = $. (17) 

According to relation (17), we can write 

P, = -V$, = 4’E. 
m, 

(18) 

Introducing relation (18) into relation (16) and 
making some changes, we obtain the relation 

a(s) = - $*VT- s.$ ij* 
I- 1 

{($-E}, 

where 

(19) 

1, = 4,N,(v, - vn) 

& = m/p,. 

Until now all relations are exact. The first approxi- 
mation will presume that the system is close to the 
equilibrium state and, therefore, the thermodynamic 

fluxes are linear functions of the thermodynamic 
forces. In the first approximation, from the relation 
(19) the phenomenological linear equations follow 

fork= I,2 ,..., n-l. 
The tensors L,, L,, L/, and L, are dependent on 

local state parameters and not on generalized ther- 
modynamic forces. They satisfy the following Onsager 
reciprocal relations : 

L,, = eqq, L, = L,, Ljk = &,. 

When the system in an equilibrium state is isotropic 
or when the crystal has cubic symmetry, then the 
above-mentioned tensors are the trivial tensors. 

In the following text, we will consider only the iso- 
tropic systems and crystals with cubic symmetry. In 
this case the equations (20) and (21) transform into 
the following form : 

fork=1,2 ,..., n-l. 
The coefficients L,,, Lkq, L, and L,, satisfy the fol- 

lowing Onsager reciprocal relations : L, = L,,, and 
Lk, = 4. 

The connection between the coefficients L,, L,, L, 
on the one hand and the measurable quantities on the 
other hand will be discussed in Sections 6 and 7. 

The equations (22) and (23) together with the equa- 
tions of type (2) the internal energy balance equation 
and Poisson’s equation, form the complete set of equa- 
tions for calculation of how the local state parameters 
of the system depend on space-time co-ordinates. 
Such information describes completely the irreversible 
process. However, the main aim of this paper is to 
derive the equation of heat conduction and to show 
the conditions under which it is valid. 

5. GENERALIZED HEAT CONDUCTION 

EQUATION 

The heat conduction equation is in fact the arranged 
internal energy balance equation (11). To arrange the 
internal energy balance equation we use the following 
relations : 

h=u+pv 
ah a0 
ap="-Ff 
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ah 
Before writing the equation of the heat conduction 

hi = pi+Ts, ac, = hi-h,. (24) we introduce some relations which will be used in the 
application of equation (25) for metal systems. With 

With the heln of the above-mentioned relations, the help of the relation 
equation (11) obtains the form 

dT au dp 
pcPx = -V-J;+i-E+parz 

-v-VP-i Ji*Vhi. (25) 
i=l 

If we introduce the relation (22) into equation (25) 
we obtain the equation of heat conduction, which is 
exact in the framework of linear approximation. 

6. EQUATION OF HEAT CONDUCTION IN 

METAL SYSTEMS 

In this section the results obtained in Section 5 will 
be applied for the binary system. As an example of 
the binary system we will consider the metal systems. 
In the metal systems the free electrons will be con- 
sidered as the first component, and the positive ions 
of lattice as the second component. For the binary 
system, the set of equations (22) and (23) has the 
following form : 

J:, = -L~~V$-~{(,~)~-E} (26) 

and 

1, = -L,qg-+{(Vk)T-E}. (27) 

When we calculate the quantity V&/q&-E from 
equation (27) and then introduce it into equation (26) 
we shall obtain the following equations : 

(28) 

we can write 

q,N, +Mz = me (32) 

i, = q,N,(v, -vJ = i-p,v,. (33) 

From the relations (33) immediately follows the 
relation 

J, =zi, =z(i-p.v,). 

If we multiply equation (28) by i, we shall obtain 
the relation 

i-E = -ql*VT+p,i*(i-p,v*)+i* (35) 

Introducing the relations (29), (33), (34) and (35) 
into equation (25), we obtain the heat conduction 
equation which has the form 

pcP$= V-NT-xV*(i-p,v,) 

1 ap dp -----~-VP- z(i-pov2) 
paTdt 

*V(hi -h2)+i 

where the following relations have been used 

Vn = (Vn), + FTVT 

and 

where 

J; = -1VT+ti,, 

and 

(29) J, + J2 = 0. 

L, 1 
II=-jr--T 

41 T n=- PRZ--- A= L,,L, I -L,L,, 
L,, L1 T=L,, . 

(31) 

We shall show that in certain special cases it is 
possible to express the equation of heat conduction in 
a simplified and approximate form, which in practical 
applications gives us sufficiently accurate results. 
These cases are as follows : 

From the Onsager relation L,, = L,, and from the 
relations (30) (31), the relation follows 

rc= -VT. 

There are three independent coefficients L,,, L,,, 
L,, which are determined by means of the measurable 
quantities ~,1 and pR. 

(36) 

(37) 

(38) 

(a) Generally, in the case of solids, when the defor- 
mation is realized only by the reversible change of 
volume, the pressure tensors T and II are zero tensors. 
To prove this we will continue in the following way, 

we divide the tensor II into two parts ; 

n = l-I*+??& 

where 

A=;SprI. 
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From the thermodynamic point of view, the ten- 
sors T and II* are function of the tensor 

dp ap 
Yit- at 

--+v*vp=o. (47) 

$(Vv+vV) --i V * vl, which is supposed to be zero and, 
therefore, the tensors T and IT* are zero tensors too. On the basis of relation (44) and the relation 

Analogously, the quantity it has a zero value as well, c1 + Q = ok we can write 
due to the assumption that the irreversible change of 
volume is not realized. In such a case, equation (1) 

vc, = 0. (48) 

can be simplified to the form If we choose T, p and c, as the local state 

p$ = -VP+ i piFi. 

parameters, then with the help of relations (43) and 
(39) (48) we can write 

/= I 

If the forces have electrostatic origin (18), then VW, -Q = 
wh 4) VT 

ar 

equation (39) is transformed into the form 

/I: = -Vp+e,E. (40) 

+ a(h, -h2) 

ap vp+ ac 
ah -4 vc 

1 
1 

In the mechanical equilibrium (dv/dt = 0), equation 
w, -w 

zz 

aT 
VT (49) 

(40) can be simplified to the form 

Vp = Q,E. (41) 

(b) We will consider the homogeneous metal 
systems. It is well-known [4] that in homogeneous 
systems with nonzero conductivity the charge density and 

changes according to the relation 

( > 
aL’ a!5 

VE =2Lvp+--fllvc =o 
ap ac, 1 (50) 

41 T 

(kc), = gvc, + $vp = 0. 
I 

(51) 

where 7 = E,(E,Ju). 
Introducing the relations (43), (45), (47), (49), (50) 

The conductivity in metal systems is about 10’ S 
and (51) into equation (36), we obtain the final form 

m-’ to 6.10’ S m-‘, so that the dielectric relaxation 
of the equation of heat conduction which has the 

time 
following form : 

f=(l.5 f 90)*10-‘9&,[S]. PC,,%= V*IVT-(z+rT)i.VT+p,?, (52) 

The charge neutrality condition (pe = 0) is fulfilled 
if the change of the temperature during the dielectric 

where the following relation has been used 

relaxation time 7 is not measurable and, therefore, r* = 2 a(h, -h2) ml 
only in this case we can consider that the heat con- 1 
duction takes place at pe = 0. From this fact and from 

41 aT = -pl -cd. 

the relations (33) and (41) it follows that The free electrons of metal represent a degenerate 

i, =i 
gas and, therefore, the parameter cPl is expressed by 

(42) the formula [7] 

and 

vp = 0 (43) n2k2 T B c -~ 
” - m,EF 

q,N, +qJ’Z = 0. (44) 

From the law of conservation of charge 
ap,/at+ V - i = 0 it follows that 

V-i = 0. (45) 

(c) The relation (43) is valid for an arbitrary time 
and therefore apjat is independent of space co-ordi- 
nates. If we assume that the pressure on the boundary 
of the metal systems is independent of time, then 

ap 
z = 0. 

From relations (43) and (46) it follows that 

We will consider that the temperature of the crystal 
is above the Debye temperature and, therefore, each 
degree of freedom of the atoms of the crystal con- 
tributes the value of k,T to the average energy of 
vibrations. In this case the parameter cP2 can be written 
in the form 

3k, TN, 
C p~=R+~V2=R+m= 

2 2 
R+z 

Introducing the last two relations into the relation 
for 77, we obtain the relation 

3kB n2kBT zy= -- 
e ( 

m,R m, --~--x-- 
3EF 3k, m2 > 

2k; T 
eEF 
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because ml/m, z lo-“, m,R/3kB = 5.49. lo-’ and 
n2kBT/3EF x 2 - 10m2, where we consider EF z 5 eV. 

In order to compare the parameter r with the par- 
ameter 77, we introduce the relation [3] 

n2k;T(6+ 1) 6+ 1 
7= - 

3eE, %?- 7T> 

where the parameter 6 depends on scattering mech- 
anism of free electrons. For example, for scattering 
on the acoustic phonons 6 = -i. We see that r: is 
comparable with the parameter 7 and, therefore, the 
term - 2: i * VT represents the new result of this paper. 

Within phenomenological thermodynamics, all 
quantities, such as 1, a, z and 77 can only be deter- 
mined experimentally. 

The second term on the right-hand side of the equa- 
tion (52) corresponds to the Thomson heat per unit 
volume and time and to the heat per unit volume and 
time, due to the dependence of the partial specific 
enthalpy on the temperature. The third term cor- 
responds to Joule’s heat per unit volume and time. 

7. EQUATION OF HEAT CONDUCTION IN 
SEMICONDUCTORS 

In metals, the Peltier and Thomson heat in com- 
parison with Joule’s is small. These quantities may 
play a significant role in semiconductors, because the 
Seebeck coefficient is larger by about four orders than 
in metals. In this part we will study the transport 
phenomena in semiconductor systems. At first we will 
consider the pure semiconductor crystal. The pure 
semiconductor crystal by definition is one without any 
impurities and defects and, therefore, the concept of 
the pure semiconductor is some kind of idealization 
because it is difficult to purify the semiconductor com- 
pletely so to remove all impurity atoms in the sem- 
iconductor crystal. It would be better to use the term 
of an intrinsic semiconductor. The intrinsic sem- 
iconductor is very pure and contains a negligibly small 
amount of impurities, so that the transport properties 
are the intrinsic properties of the semiconductor crys- 
tal and not due to extrinsic sources such as chemical 
impurities and physical defects. Due to covalent bonds 
between the host atoms, they can be considered as 
the neutral atoms. We will also consider an impurity 
semiconductor. There are two kinds of impurities. 
When an impurity atom sits at a lattice site and sub- 
stitutes for a host atom, it is known as a substitution 
impurity. When it sits in the space between the host 
atoms (assuming all host atoms are situated at lattice 
sites), it is known as an interstitial impurity. There are 
two main types of substitutional impurities: donors 
and acceptors. The donors and the acceptors can 
occur in two states : in the neutral charge state and in 
the positive or negative charge state. The donors and 
the acceptors are very important because they control 
the transport phenomena and type of the semicon- 
ductor. The interstitial impurity atoms are also pre- 

sent in a semiconductor, but they are often electrically 
inactive (neutral atoms) and hence, they do not have 
as great an effect on the transport phenomena in the 
semiconductor as the donors and the acceptors have. 
Since the impurity diffusion coefficient at room tem- 
perature is about 1O-48 m2 SC’ to lo-l8 m2 SC’ [S], we 
can consider the average velocity of the impurity 
atoms to be the same as the average velocity of the 
host atoms. 

In contradistinction of the metal systems, in sem- 
iconductor systems the generation and recombination 
process of the electrons and holes takes place. Due to 
that process, the mass balance equations of type (3) 
have to be modified into the following form : 

dci 
pz = -V-Ji+gi-r,, 

for i = 1, 2, . . . , n. 
In this case, we meet with the two different types of 

the irreversible phenomena according to their ‘ten- 
sorial character’. The first group of phenomena is 
formed by a ‘vectorial process’, such as heat conduc- 
tion, diffusion, electrical conduction, and their cross- 
effects. The second group of irreversible phenomena 
is formed by ‘scalar phenomena’, such as the gen- 
eration-recombination process, irreversible change of 
volume, and their cross-effects. 

From the beginning of this paper, we assumed that 
it was possible to neglect the irreversible change of 
volume. Now we extend this assumption so that in the 
first approximation it is possible to neglect the ‘scalar 
phenomena’, but nevertheless, it would be interesting 
to study the effect of the ‘scalar phenomena’ on the 
semiconductor systems. 

After an introductory description of the semi- 
conductor systems we shall move on to particular 
cases. 

7.1. Intrinsic semiconductor crystal 
The intrinsic semiconductor will be considered as 

the ternary system. The electrons are considered as 
the first component, the holes as the second one and 
the host atoms with a negligible small amount of 
impurities as the third one. According to equations 
(22) and (23) we can write 
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The Onsager reciprocal relations are as follows : 

L,, = ‘G, 

L,, = L2q 

and 

L,* = L,,, 

where [3] 

ji, = EF-EC 

and 

jiz = E,-E,. 

The above-mentioned relations can be used only if 
the electrons and holes are in equilibrium with each 
other. 

We will further consider the homogeneous sem- 
iconductor systems. In this case (VE,), = (VE,), = 0. 
Considering this fact, the equations (53)-(55) can be 
simplified as 

VT J; = -LqqF+ 
L,, +Lyz T {(V?x+E} (56) 

VT L,,+L,2 
i, = -L,,-+ 

T= T{ (+ +E} (57) 

and 

i _ _L VT L2,+L22 
2- 2y- + 

T= 
7{(VTr,+E}> (58) 

where q2 = -4, = e has been used. 
From equations (57) and (58), we calculate the term 

[V(E,/e)],+E and introduce it into equation (56). 
Using the Onsager reciprocal relations we obtain the 
following equations : 

Ji = -1VT+x(i-p,v,) (59) 

i, = -BVT+t, (i-pevj) (60) 

i > 
VF T+E = -qVT+p,(i-p,v,), (61) 

where 

1 = L,,(L,, +2L,2+L22)-(Lly+LZy)2 

T2&, +%2+L22) 

LI,+Lq 
n = L,, f2L,, +L2* 

L1,+ L2, 7l 

‘= - 7-(L,,+2L,2+~22)= -T 

T 

PR =L,,+2L,,+L,, 

T 

PR’ = L,, +L,? 

Lb 
” = - T(L,, +L,=) 

and 

22 

(62) 

The quantities i, rl and pR are measurable quan- 
tities. If we multiply equation (61) by i, we shall obtain 
the relation 

i-E = -qi*VT+p,i*(i-p,v,)-ii (63) 

Introducing the relations (59) and (63) into equa- 
tion (25) we obtain the following equation : 

pcpg= V*IVT-V*rc(i-p,v,) 

+pgTs -v*Vp-- i J;Vh; (64) 
I= I 

which is an exact equation of heat conduction in the 
framework of linear nonequilibrium thermodynamics. 

The equation (64) may be simplified under the cer- 
tain conditions. The charge neutrality condition in the 
intrinsic semiconductors in general need not be always 
fulfilled and, therefore, it has to be checked in each 
case. For example, the conductivity of pure silicon [6] 
at the liquid nitrogen temperature 77 K is so small 
(as, = 10m3’ S m-‘) that it is an insulator. But at 
the room temperature bs, = 3.2. 1O-4 S m-‘. If we 
consider the relative permittivity for Si E, = 11.8, then 
the dielectric relaxation time of this Si is at 77 K 
5 = 10” s and at 300 K ? = 3.2. lo-’ s. For intrinsic 
Ge at T = 300 K (crGe = 2.32*10-’ S m-r; E, = 16) 
the dielectric relaxation time is f = 6.94. lo-” s. 
Additionally, we will consider only those intrinsic 
semiconductors at which the charge neutrality con- 
dition is fulfilled. From the charge neutrality con- 
dition and from the assumption (c) in Section 6, as 
was shown, the relations (42), (43), (45), (47) and the 
relation 

N, = N2 (65) 

follow. 
Now we shall direct our attention to an arrange- 

ment of the last term on the right-hand side of equa- 
tion (64). From the relation Cf=, J, = 0 we obtain 
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vj -v = -c,(v, -vj)-cz(vz -v3). (66) 
With the help of the relations (65) and (66), we can 

write the following relations : 

c,(r,--l)-t,T(l-c,) >I i 

I 
/?VT (67) 

and 

J2 = 
[ 
:t,c2 + :(l -t,)(l -c2) i 1 

1 BVT, (68) 

where the relation (60) has been used. 
Now for the ideal systems the parameter hi depends 

on the state parameter T, p and therefore 

V(h,-h3) = a(h;;‘3)VT, (69) 

where the relation (43) has been used. 
When we introduce the relations (67)-(69) into the 

last term on the right-hand side of equation (64) we 
shall obtain the following relation : 

i Ji*Vhi = i Ji.V(hi-h,) = 73.VT+y,(VT)2, 
i= I i-l 

(70) 

where 

7:= Tc,(II-1)+,(1-C,) 
[ 1 w, -h3) aT 

+ ~r,c2+~(1-Q(1-c2) 
[ 1 w2 -h3) 

aT (71) 

and 

For the further simplification of equation (64), we 
will assume that the following assumption is fulfilled. 

(a) In the thermodynamic equilibrium, EF is only 
a function of the temperature. If the system is homo- 
geneous, but thermically inhomogeneous, then EF is 
only the function of the temperature, and therefore 

( > 
v+ *=o. (73) 

A is a function of the temperature and EF, and 

therefore, according to the relation (73), the relation 
is valid 

(Vn), = 0. (74) 

When we again assume that the assumption (c) 
in Section 6 and the assumptions in this section are 
fulfilled, then we substitute the relations (43) (45), 
(47), (70), (73) and (74) into equation (64). After 
substituting, we obtain the equation 

(75) 

In order to compare the parameter 7: with the par- 
ameter T, we shall present their numerical estimation. 
The mass-fractions c,, c, are very small with respect to 
one. For example, for Si [5] (T = 300 K, M, = 0.97m,, 
m2 = 0.5~ nj = 2.10i6 mP3, N3 = 5. 102* rnm3, 
p3 = 2.328 * lo3 kg rnm3, m3 = 4.6. 1O-26 kg) the 
mass-fractions c, x m,n$p, = 3.8 - lo-l8 and 
c2 x m2ni/p3 = 1.96 - 10-‘8. Due to the small values of 
the mass-fractions (without c3), we can neglect all 
terms containing the mass-fractions c, and c2 in the 
relations (71) and (72). In this case, relation (71) can 
be written in the following approximate form : 

(76) 

Additionally, we will consider electrons and holes 
as a nondegenerate gas and the temperature of the 
crystal to be above the Debye temperature. In this 
case, each degree of freedom of the electrons and holes 
contributes the value of iksT to the average kinetic 
energy, and each degree of freedom of the host atoms 
contributes the values of K,T to the average energy 
of vibrations and, therefore, relation (76) can be writ- 
ten as 

7:= -~t,(c,, -c~3)+!+h)(Cp2-Cp3) 

= -~~,(c”,-c”3)+~(l-f,)(c”*-c”3) 

because ml/m3 = 1.92. lo-’ and m2/m3 = 10m5. 
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In a similar way, we can approximate the relation where ‘I, follows from the relation (82) ifwe put b = 0 
(72). After approximation we obtain the relation and 

According to the second relation of equation (62) 
we can write 

t =PR= eN, P, 1 
(78) 

PRI eN,p,+eN2p,, = 1+6‘ 

Substituting the relation (78) into the relation for 
t: we obtain 

3kB 1 -b tf= ---, 
2e l+b (79) 

For the numerical estimation of the parameter t we 
introduce the relation [3, 61 

where b = p,/pe is independent of temperature and 

&-f-E\ EF = ~ 
2 (81) 

If we substitute the relation (81) into the relation 
(80) we obtain the relation 

~=[;(6+;)+sE. (82) 

According to the relations (37) and (82), we can 
write the relation 

13rj (EC-&) 1 -b 
z= -TaT=2eTI+b. (83) 

For Si [S] (EC-E, = 1.12 eV, b = ,u,Jp_ =$ 
T=300K,p,=3.1~103~m)r=8.10~“VK-‘and 
tt = -0.55. lo-“ V K-‘. We see that rg represents 
6.9% of r. For Ge [5] (/Z-E, = 0.803 eV, b = z, 
T=300K, pR=4.3Rm) r=4.6*10-“VK-‘and 
z: = -0.44. 1O-4 V K-‘. The z: represents 10% of 
z. The term - rti * VT in equation (75) represents the 
new result of this paper. 

For the comparison of the second and third term 
on the right-hand side of equation (75) we will present 
their ratio. According to the first relation (62) we can 
write 

(84) 

PRI = PRt(l +bh 

Now we give the numerical results of the second, 
third and fourth term on the right-hand side of equa- 
tion (75). For Si (]VT] = lo3 Km-‘) according to the 
relations (77)-(79), (83) and (84) we can write for 
i = 10-l A m-2. Yap = -6.92*10-’ J mm3 s-‘, 
(t+zf)i]VTl = 7.44. lop2 J mm’s_‘, pRi2 = 3.1 - 10 J 
mp3 s-I , but for Ge [5] (E,- E, = 0.803 eV, b = $) we 
can write for i = 10-l A mm*: y2(Vn2 = 2*10-’ J 
mm3 s-‘, (z+z$)i]V7l = 3.5. 10m3 J m-3 s-‘, 
pRi2=4.3*10~2Jm-3s~‘.Inthefirstcase,thesecond 
and fourth term on the right-hand side of equation 
(75) can be neglected according to the third term. In 
the second case, all terms on the right-hand side of 
equation (75) have to be considered. 

7.2. Impurity semiconductors 
The composition of the impurity semiconductors 

was described at the beginning of Section 7. The 
donors and the acceptors can either be in the neutral 
charge state or in the positive (donor) or in the nega- 
tive (acceptor) charge state. The charge state is real- 
ized in this way : the electron can jump from a valence 
band to an acceptor ground state or from a donor 
ground state to a conduction band. The result of that 
process is in the first case the generation of a valence 
hold (delocalized) and a localized electron on the 
acceptor, and in the second case the generation of a 
conduction (delocalized) electron and a localized hole 
on the donor. According to these facts, the impurity 
semiconductor is composed of five components. The 
conduction electrons will be considered as the first 
component, the valence holes as the second one, the 
localized holes on donors as the third one, the local- 
ized electrons on the acceptors as the fourth one and 
finally the donors and acceptors with the host atoms 
as the fifth one. The average velocity of the donors, 
acceptors, localized electrons and holes is the same as 
the average velocity of the host atoms. 

Considering this composition of the impurity semi- 
conductors, the entropy production according to the 
relation (19) has the following form : 

I 

a(s) = -$*VT-i$ i; 
J-1 

{(V$)T -E}. (85) 

From the relation (85) in the framework of the 
linear nonequilibrium thermodynamics we obtain the 
phenomenological equations (56)-(58). Proceeding in 
the same way as in Section 7.1, we obtain the following 
equations : 

J; = -IVT+rc(i-p,v,) (86) 

i, = -pVT+tr(i-p,v5) (87) 
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= -qVT+p,(i-p,vd, (88) 

where relation (62) has been used. 
Multiplying equation (88) by i, we obtain the 

relation 

E-i = -qi.VT+p,i.(i-p,v,)-is V$ T. 
( > 

(89) 

As a rule, the charge neutrality condition in 
impurity semiconductors is fulfilled. For example, for 
n-type Si [6] (T = 300 K, E, = 11.8, pR = 8.8-10-r 
Qrn). In this case we find out that the dielectric relax- 
ation time ? = 9.2~10~I2 s. If we consider that the 
assumptions (a), (b) and (c) in Section 6 are fulfilled, 
then we can introduce the relations (43), (45), (47) and 
(89) into equation (25). We then obtain the following 
equation 

-,$ Ji*V(h-4, (90) 

where the relation X,5=, Ji = 0 and the relation (42) 
have been used. From the relation Zf=, Ji = 0 the 
relation 

vs--v = -c,(v,-vs)-c2(v2-vg) (91) 

follows. 
The electric current density is expressed by the 

relation 

i = i q$‘jVj = q1Nl(vl -vs>+qzN2(v2-Vs), (92) 
,=I 

where the charge neutrality condition 

j$ qjNj = O 

has been used. 
With the help of the relations (87), (91) and (92) 

we can write the following relations : 

J, = 1 i 

1 BVT (94) 

I 
i 

J, 

(96) 

For the ideal systems the parameter h, depends on 
the state parameters T, p and therefore 

where relation (43) has been used. 
We will consider that assumption (a) in Section 7.1 

is fulfilled, then we can introduce the relations (93)- 
(96) into equation (90). After doing this we obtain the 
equation 

pc,g= V*IVT-(z+zQi*VT+p,i2-y,(VT)2, 

(98) 

where 

r:= t,--(1-c,)+c,-(t,--1) 
[ 

ml m2 WI -w 41 q2 1 aT 

and 

m2 ml 
(l-t,)(l-c,)--~t,c,- 

W2 -W 
Q2 41 1 dT 

(I,-l)Z-$ cg I[ m-h,) aT 

w4 -hd 
-c4 aT 1 (99) 

Y3 =B 

+ 

(100) 

In order to compare the parameter rr with the par- 
ameter r, we shall give their numerical estimation. The 
mass-fractions c, + c4 are very small with respect to 
one. For example, for n-type Si [5] (m, = 1.065m0, 
N, = 10z4 mm3, Ns = 5. 102’ rne3, ps = 2.328. lo3 kg 
m-‘) the mass-fraction c, N m,N,/p, = 4.16. lo-“. 
The mass-fractions c2, c3 and c4 are either of the same 
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order, or less than c,. Due to the small values of the 
mass-fractions (without c,), we can neglect all terms 
containing the mass-fraction in the relations (99) and 
(100). In this case, the relations (99) and (100) are the 
same as relations (76) (for t, = 1) and (77) therefore 
we can write 

(101) 

and 

% 
7f= --. 

2v (102) 

We again consider electrons and holes as a non- 
degenerate gas and the temperature of the crystal to 
be above the Debye temperature. 

The quantity tl for an n-type semiconductor is 
expressed by the relation [3] 

++;)+e’t~+ 

-k,Tln 

where 

E =&ED 
F 2 

+k,Tln 2 
J 

(104) 
c 

semiconductor n z n1 and therefore /I = 0 and also 
ys x 0. In this case, the equation (99) simplifies into 
the following form : 

pcp$= VSIVT-(r+r:)i*VT+p,i2. (107) 

Analogous discussion can be carried out also for a 
p-type semiconductor if we consider the holes as the 
first component. For n-type Si [6] (pR = 8.8 * 10-l Qm, 
/VT] = IO3 K m-‘, the numerical values on the 
second and third term of the right-hand side of the 
equation (107) are as follows : for i = 1 A me*: 
-(7+7~)i]VZj = 1.13*10-’ J rnM3 s-r, pRi2 = 8.8. 
IO-’ J mm3 s-‘. We see that both terms are of the same 
order, butfori= 10Amm2: -(7+7t)i]VT] = 1.13 J 
m-3 s-l, pRi2 = 8.8 * 10 J mm3 s-‘. In the last case the 
term (r+rF)i]Vfl is only 1.2% of pRi2 and, therefore, 
it can be neglected. 

8. CONCLUSION 

This paper gives the following results : 

??derivation of the equation of heat conduction for 
multi-component condensed systems ; 

??application of that equation of heat conduction 
to metal systems and semiconductors ; 

?? the conditions at which the equation of heat con- 
duction is valid have been shown ; 

?? the equation of heat conduction contains the term 
which represents the new result. 

(105) Acknowledgement-The author is grateful to the Slovak 
Grant Agency for Science (grant no. l/1498/94) for partial 
supporting of this work. 

Substituting the relations (104) and (105) into the 
relation (103), we obtain the relation 

(106) 

From the relation (37) and (107) it follows : 

T=_T!~~~-~D 
dT 2eT 

For n-type Si [5] (EC-ED = 0.01 eV) we obtain 
7 = 1.7*10~’ V K-’ and 7: = -1.3*10-4 V Km’. 
The term - zp * VT on the right-hand side of the equa- 
tion (98) represents the new result of this paper. 

According to the first relation of (62) for n-type 
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